
IJDCST @Feb-March Issue- V-2, I-3, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

35 www.ijdcst.com

Speculative Analysis Exploits Qualitative and Quantitative

User Studies

1 Hemalatha Narne ,2 Adepu Sridhar.
1Vignan university,Vadlamudi, Gutur.
2Assistant Professor , Vignan university,Vadlamudi, Gutur.

ABSTRACT: Identifying and resolving development

processes of sharing project by software developers

arise in collaborative development and can slow

progress and decrease quality of the assurance

development of shared project. Traditionally

developed and design crystal tool as a speculative

analysis in real time application development.

Crystal, a publicly available tool that helps

developers identifies, manage, and prevent conflicts.

Crystal uses speculative analysis to make concrete

advice unobtrusively available to developers.

Qualitative and Quantitative approaches have

typically been combined by using them side-by-side

or sequentially, until the point when the separately

generated results are interpreted and conclusions

drawn. In this we propose to develop a mixed method

to describe the analysis of the qualitative and

quantitative methods. The mixed methods research

purpose most frequently served by integration of

analyses is initiation, that is, to be provocative and

bring fresh perspectives through contradiction and

(intended or unintended) discovery of paradox.

Experimental results show efficiency of the conflicts

and risks present in the shared project development.

KEY WORDS: Crystal Tool, Qualitative and

Quantitative approaches

I. INTRODUCTION

 Software Engineering is the study of design,

development and maintenance of software. In other

words it is the application of a systematic,

disciplined, quantifiable approach to the

development, operation, and maintenance of software

and an engineering discipline that is concerned with

all aspects of software production. Communication

skills, team dynamics, working with a "customer,"

and creativity are also important factors in the

software engineering. It is important because of the

large expensive software systems.

Software development process:

 A set of activities that leads to the

production of a software product is known as

software process. Computer-aided software

engineering (CASE) tools are being used to support

the software process activities. As there is a vast

diversity of software process for effectiveness and

limited case tools and different types of products.

There is no ideal approach that has yet been

developed to software process. There are some

fundamental activities that are common in all process

activities and some of them are like software

maintenance, design, validation and specification.

 A software development process is also

known as software development life cycle (SDLC). It

is a term used to describe a process of analysis,

IJDCST @Feb-March Issue- V-2, I-3, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

36 www.ijdcst.com

planning, design, maintenance, deployment and

implementation of an application.

Risk Management in Software Engineering:

 The management of a risk is the important

future in throughout the software development life

cycle. A risk is a potential future harm that may arise

from some present action, such as, a schedule slip or

a cost overrun.

“Risk in itself is not bad; risk is essential to progress,

and failure is often a key part of learning. But we

must learn to balance the possible negative

consequences of risk against the potential benefits of

its associated opportunity.”

Risk management is a series of steps whose

objectives are to identify, address, and eliminate

software risk items before they become either threats

to successful software operation or a major source of

expensive rework.

The Risk Management Process:

 The risk management process can be divided

into two phases. Those are risk assessment and risk

control. The risk assessment further broken down

into risk identification, risk analysis, and risk

prioritization. Like that risk control also divided into

risk planning, risk mitigation, and risk monitoring.

Fig(1). The Risk Management Cycle

Software Risk Management:

 There could be risk associated with the

every software project, the mail goal is to identify

and manage those risks. The most important risk

management tasks are risk index, risk analysis, and

risk assessment.

 1).Risk Index: Risk index is the

multiplication of impact and probability of

occurrence. Risk index can be characterized as high,

medium, or low depending upon the product of

impact and occurrence. Risk index is very important

and necessary for prioritization of risk.

 2).Risk Analysis: The risk analysis is used

to identify the high risk elements of a project. The

main purpose of risk analysis is to understand risks in

better ways and to verify and correct attributes. A

successful risk analysis includes important elements

like problem definition, problem formulation, data

collection.

 3).Risk Assessment: It integrates risk

management and risk analysis. . Risk assessment

requires correct explanations of the target system and

IJDCST @Feb-March Issue- V-2, I-3, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

37 www.ijdcst.com

all security features. It is important that risk deferent

levels like performance, cost, support and schedule

must be defined properly for risk assessment to be

useful.

Strategies for Risk Management:

 Throughout the software development

process, there are various strategies for risk

management could be identified and developed. The

risk strategies could be divided into three classes

namely careful, typical, and flexible. Generally,

careful risk management strategy is proposed for new

and inexperienced organizations whose software

development projects are connected with new and

unproven technology; typical risk management

strategy is well-defined as a support for mature

organizations with experience in software

development projects and used technologies, but

whose projects carry a decent number of risks; and

flexible risk management strategy is involved in

experienced software development organizations

whose software development projects are officially

defined and based on proven technologies.

II. RELATED WORK

 Measuring the effect of conflict on software

engineering teams by J. S. KARN AND A.

J. COWLING.

 Effects of intra-group conflict on packaged

software development team performance by

Steve Sawyer.

 Resolving conflicts in requirements

engineering by Camilo Fitzgerald.

 Software Errors And Complexity: An

Empirical Investigation Victor R. Basili And

Barry T. Perricone.

 Common Errors in Large Software

Development Projects by David A. Gaitros.

 The identification of the various factors that

have an effect on software development is of prime

concern to software engineers. The specific focus of

this paper is to analyze the relationships between the

frequency and distribution of errors during software

development, the maintenance of the developed

software, and a variety of environmental factors.

These factors include the complexity of the software,

the developer's experience with the application, and

the reuse of existing design and code. Such

relationships can provide an insight into the

characteristics of computer software and the effects

that an environment can have on the software

product. Such relationships can also improve the

reliability and quality with respect to computer

software. In an effort to acquire knowledge of these

basic relationships, change data for a medium-scale

software project were analyzed.

 Developing software is a relatively new area

of enterprise that bears little resemblance to other

engineering disciplines. Although the term software

engineering is widely used throughout the business,

the act of creating a new piece of software can hardly

be compared to the design and construction of a new

building or bridge. Computer scientists are still

struggling after 30 years to define software

engineering and to find the right combination of

techniques, procedures, and tools that assure success

in development of large complex systems.

Conflict:

 Conflict is a natural disagreement resulting

from individuals or teams that differ in attitudes,

IJDCST @Feb-March Issue- V-2, I-3, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

38 www.ijdcst.com

beliefs, values, or needs. As human beings interact in

organizations, differing values and situations create

tension. One prominent scholar of conflict listed the

following issues involved in conflicts:

• Control over resources;

• Preferences and nuisances in which the

tastes or activities of one party impinge upon another;

• Values, when there is a claim that a value or

set of values should dominate;

• Beliefs, when there is a dispute over facts,

information, reality, and so forth;

• The nature of the relationship between the

parties.

The traditional view of conflict was that it was a

negative phenomenon and a serious threat to effective

team performance. However, this is not a universally

held opinion amongst conflict researchers, and it has

been challenged: Scholars have argued that more

focus should be placed on the form the conflict takes.

The point is that conflict per se need not be a

negative force. Indeed, some have argued

persuasively that when positive conflict is

recognized, acknowledged, and managed in a proper

manner, personal and organizational benefits can

accrue.

Constructive and Destructive Conflict:

 Conflict has been given a bad name by its

association with disruption. However, as was

mentioned in the previous section, several researchers

have argued that conflict need not be a negative force

and that it is often the case that it is the form the

conflict takes that determines how much damage is

caused that is, whether it is a constructive or

destructive conflict.

Constructive conflict is characterized by cooperation

and flexibility. The principal focus is on trying to

achieve a solution between struggling parties that is

mutually satisfactory to everyone. However,

destructive conflicts are more concerned with power

struggles and personal antagonisms and are

characterized by domination, escalation, retaliation,

com petitions, and inflexibility. When a conflict

spirals out of control, it runs the risk of becoming

destructive. When this happens, participants lose

sight of their initial goals and focus on hurting the

adversary.

Persistence of Conflicts:

 To maintain a relationship longer time it has

to change more opportunities into more severe

relationship. By using history we have to trace the

backward in time to measure the lifespan of a conflict

from the two change sets. When two branches came

in to conflict with each other, those sets were merged

to find the earliest point in time. For this purpose we

have to create a time order list of the change sets

from each of the two branches. It coexisted at each

point in time to see if they were in conflict, stopping

when we found a no conflicting pair. This approach

compressed all other sub branches and merges that

existed on the branches that contributed to the merge

under analysis.

 Before it has been resolved the textual X

relationship is persisted up to 3.2days and involved

18 .3 change sets in average case. The developers let

IJDCST @Feb-March Issue- V-2, I-3, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

39 www.ijdcst.com

know about the details of TEXTUAL relationships

immediately upon their creation. In the worst case,

one TEXTUAL X relationship in MaNGOS persisted

for 334 days and included 676 changesets by one of

its developers before it was resolved.

In order to prevent future conflicts, a developer has to

know about that they can measure other changes

safely. To maintain a textual relationship persistently,

the more opportunities it has to change into a

conflict. Accordingly, we asked “How long do

developers experience the TEXTUALp

relationship?” We measured the lifespan of a

TEXTUALp relationship for each conflict-free merge

in the history.

 Before incorporation, the TEXTUALp

relationship persisted for 2.4 days and involved 12.7

change sets (with median values of 0.8 days and 7

change sets) in average case. The developers have to

learn immediately about the textual relationship and

encouraging earlier and smooth incorporation, A tool

can be helped. In the worst case, in terms of time, one

TEXTUALp relationship in Voldemort persisted for

138 days; in terms of change sets, one TEXTUALp

relationship in Gallery3 persisted for 232 change sets

without a merge, while each of the possible merges

along the way would have been textually clean and

fully automated. Neither of these two long-lived

TEXTUALp relationships evolved into a conflict.

III. EXISTING SYSTEM

Crystal precisely reports actual conflicts, determining

the relationship between two developers’ states by

actually creating the merged artifact. In other words,

to find out what would happen if Bill and Melinda

merged their code, Crystal, in the background, makes

a copy of Bill’s code and incorporates Melinda’s

changes. Similarly, once Crystal creates the merged

code artifact, it attempts to compile and to execute

the test suite on that artifact. Again, Crystal only

reports a compilation or testing conflict when the

build or a test actually fails. Because the computation

happens in the background, the developers can

continue to work without interruption; in certain

situations, we expect the developers to ignore

Crystal, much as they sometimes ignore project

bulletin boards and email.

 We refer to the idea of attempting a set of

actions on the developer’s state in the background

and reporting on the outcomes of those actions as

speculative analysis.

 Awareness tools notify developers when

they might have conflicting changes. This

approximation is computed differently in various

tools. Some determine if a co-developer is working in

the same file, some report any change to the

repository others report concurrent changes to the

AST. These approaches can lead to the inclusion of

false positives — reporting potential conflicts that do

not evolve into actual conflicts. Furthermore, few

current awareness tools try to automatically detect

higher-order merge conflicts; again, Crystal is precise

as it uses the project’s tool chain to dynamically

detect conflicts by execution of the build system and

IJDCST @Feb-March Issue- V-2, I-3, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

40 www.ijdcst.com

test suites. We refer the reader to for a more detailed

description of related work.

 Crystal can, in rare situations, also report

false positives. Check pointed changes that are later

discarded can cause a teammate to see a pending

conflict that later disappears. This can happen when a

developer checkpoints exploratory code or a partial

change.

 Crystal unobtrusively reports four kinds of

information: the developer’s local state, relationships

with other developers or repositories, the possible

actions (which is derived from the local state and

relationship with the master repository, and which we

omit from this paper for brevity), and guidance about

those actions. The remainder of this section

summarizes Crystal’s interface and the information it

reports; more details on both are available.

Example Crystal use

 Figure shows a screenshot of Crystal’s main

window. The window displays a row of icons for

each of a developer’s projects. In this example, there

are two projects: “Let it be” and “Handle with care”.

The former has four collaborators: George (the

developer running Crystal), Paul, Ringo, and John.

The latter has five collaborators: George, Jeff, Roy,

Bob, and Tom. Each developer can independently

choose whether or not to run Crystal.

 On the left-most side of each row,

underneath the project name, Crystal displays the

local state. This tells George, in the native language

of the underlying VCS, whether he must checkpoint

changes (hg commit, in Mercurial) or resolve a

conflict. Then, for each repository (master and other

collaborators’, whether or not they are running

Crystal), Crystal displays the relationship with that

repository. If George has the ability to affect a

relationship now, the icon is solid, which combines

the When and Capable guidance. If George cannot

affect the relationship, the icon is hollow. If the

relationship is of the might variety—George might or

might not have to perform an operation to affect the

relationship—the icon is solid but slightly

unsaturated (see the relationship with Bob in the

“Handle with care” project).These features allow

George to quickly scan the Crystal window and

identify the most urgent issues — the solid red icons

— followed by other, less severe icons. George can

also quickly identify whether there is something he

can do now to improve his relationships (in the

example, George can perform actions to improve his

relationships in the “Handle with care” project, but

not in “Let it be”), and whether there are unexpected

conflicts George may wish to communicate with

others about. Holding the mouse pointer over an icon

displays the action George can perform and the

Committer, Consequences, and Ease guidance, when

appropriate.

IJDCST @Feb-March Issue- V-2, I-3, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

41 www.ijdcst.com

IV. PROPOSED SYSTEM

By combining the qualitative and quantitative

approaches, the points until the separately generated

results are interpreted. It will show efficiency of the

conflicts and risks that are presented.

Qualitative and Quantitative Approach:

 The multiple research methods and tools of

qualitative experimental and non-experimental are

essential for researchers. The quality of a program is

limited when we are not using by combining both the

methods. The elements of qualitative and quantitative

approaches are combined into a unique design to

undertaking as a mixed method. The way in which

the mixed methods might be differentiated at which

the elements of qualitative and quantitative

approaches are integrated together. The purpose of

using both methods to finding the corroborative

evidence from different methods.

Strategies for Integration:

 There are four strategies for combing of

both qualitative and quantitative approach. Those are:

(a) Data Transmission (b) Typology Development (c)

Extreme Case Analysis (d) Data Consolidation.

Data transmission: The one form of data is

transformed into other form is known as data

transmission.

Typology Development: Classification of data from

one set of data is applied to another set is known as

typology development.

Extreme Case Analysis: The outliers or residuals

revealed by one analysis are explored using

alternative data or methods are known as Extreme

Case Analysis.

Data Consolidation: To create variables for use in

further analysis is known as data consolidation.

 Combination of mixed method analysis is

most obvious when data from one type is used in

analysis of other type. The strategies of integration

might be used in the context of expansion,

development and complementarity. But the

integration with corroboration is inconsistent. The

popular association of mixed methods with

corroboration and consequent lack of consideration

of integrative strategies; and the view that integration

or synthesis of results is an intellectual or

ideologically driven activity. To achieve integration

of data analysis, it requires the capacity to visualize

what might be possible to set the new paths.

Integration is greatly helped by data handling

technology to facilitate the process

Two Major Routes to Integration in Analysis:

 Propose in terms of data handling, there are

two major routes to integration that underlie the

various strategies are

 1). Combination of data types with in an

analysis, which is used for both statistical analysis

and comparison of coded narrative material. This

could occur through by combining both numerical

and textual data. For example combination of survey

and interview.

 2). Conversation of data from one type to

another type for analysis. The conversation of

qualitative codes to codes used in a statistical

IJDCST @Feb-March Issue- V-2, I-3, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

42 www.ijdcst.com

analysis through the contribution of qualitative

analysis.

Using Software to Combine Numeric and Text

Data for Analysis:

 The data management is to combine mixed

forms of data and procedures for working with them.

The advent of text-handling spreadsheets and

databases and, in particular, of text analysis software,

has heralded solutions to these data management

problems, and opened up new possibilities for more

rigorous and/or deeper analysis of this type of data.

They have not necessarily solved the theoretical

issues which could arise when different forms of data

are combined.

V. EXPERIMENTAL RESULTS

 Speculative analysis over version control

operations provides precise information about

pending conflicts between collaborating team

members. These pending conflicts—including

textual, build, and test—are guaranteed to occur

(unless a developer modifies or abandons a

committed change). Learning about them earlier

allows developers to make better informed decisions

about how to proceed, whether it is to perform a safe

merge, to publish a safe change, to quickly address a

new conflict, to interact with another developer and

so on. Our retrospective, quantitative study of over

550,000 development versions of nine open-source

systems, spanning 3.4 million distinct (and a total of

over 500 billion, over all versions) NCSL, indicates

that

1. conflicts are the norm rather than the exception,

2. 16 percent of all merges required human effort to

resolve textual conflicts,

3. 33 percent of merges that were reported to contain

no textual conflicts by the VCS in fact contained

higher-order conflicts, and

4. Conflicts persist, on average, for 3.2 days (with a

median conflict persisting 0.7 days).

 A range of statistical techniques, including

several based on patterns of association, are being

used in an ongoing concept analysis of research

performance (Bazeley, unpublished data). The

primary data comprise descriptions given by 295

academics for eight different aspects (‘brands’) of

research performance—descriptions of researchers

who are productive, active, recognized, satisfied,

approachable, and/or who demonstrate quality,

ability, benefit. These have been coded using NVivo

to create a set of descriptors. Additionally, basic

demographic data are available, along with each

academic respondent’s weighting of the importance

(or value) of each of these eight aspects of

performance for doing research and for assessing

research (as interval scales). These additional

numeric data have been imported into the NVivo

database for use in combination with text responses,

and coding based on the descriptions given has been

exported from NVivo in a number of forms, each

contributing to a different type of analysis.

 These techniques are all being used in an

exploratory way, appropriate to the purpose of

exploring and elucidating a concept. Extensions to

this work are likely to involve confirmatory

strategies.

VI. CONCLUSION

IJDCST @Feb-March Issue- V-2, I-3, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

43 www.ijdcst.com

 To date, it is developments in software

programs for analysis of qualitative data that have

contributed most noticeably to researchers’ capacity

for integrating methods in the ways described in this

paper. Indeed, Lyn Richards has argued that the most

radical methodological changes that came about with

qualitative computing were not in what the computer

could do (such as coding), so much as the uses to

which it could be put in driving a complex and

iterative data interrogation process.

 Tools are still being developed, a process

which is both responsive to and which can lead to

new techniques in data analysis. So, these techniques

are used to overcome the conflicts in the existing

system and as a result we get the effective results by

using the techniques used in this paper.

Future Scope:

 As further improvement of our application

achieves a systematic representation of both

qualitative and quantitative analysis using some

newly developed tools specifications like RASOOL,

ATUSA, etc. This improvement gives better results

compared to earliest tool generation in finding

conflicts and risks.

VII. REFERENCES

[1] B. Al-Ani, E. Trainer, R. Ripley, A. Sarma, A.

van der Hoek, and D.Redmiles, “Continuous

Coordination within the Context of Cooperative and

Human Aspects of Software Engineering,” Proc. Int’l

Workshop Cooperative and Human Aspects of

Software Eng., pp. 1-4, May 2008.

[2] B. Appleton, S.P. Berczuk, R. Cabrera, and R.

Orenstein, “Streamed Lines: Branching Patterns for

Parallel Software Development,”Proc. Pattern

Languages of Programs Conf., 1998.

[3] T. Ball, J.-M. Kim, A.A. Porter, and H.P. Siy, “If

Your Version Control System Could Talk,” Proc.

Workshop Process Modelling and Empirical Studies

of Software Eng., May 1997.

[4] J.T. Biehl, M. Czerwinski, G. Smith, and G.G.

Robertson, “FASTDash: A Visual Dashboard for

Fostering Awareness in Software Teams,” Proc.

SIGCHI Conf. Human Factors in Computing

Systems, pp. 1313-1322, Apr. 2007.

[5] C. Bird, P.C. Rigby, E.T. Barr, D.J. Hamilton,

D.M. Germa´n, and P.T. Devanbu, “The Promises

and Perils of Mining Git,” Proc. Sixth IEEE Int’l

Working Conf. Mining Software Repositories, pp. 1-

10,2009.

[6] C. Bird and T. Zimmermann, “Assessing the

Value of Branches with What-If Analysis,” Proc.

ACM SIGSOFT 20th Int’l Symp. Foundations of

Software Eng., 2012.

[7] Y. Brun, R. Holmes, M.D. Ernst, and D. Notkin,

“SpeculativeAnalysis: Exploring Future States of

Software,” Proc. FSE/SDP Workshop Future of

Software Eng. Research, pp. 59-63, Nov. 2010.

[8] Y. Brun, R. Holmes, M.D. Ernst, and D. Notkin,

“Crystal: Precise and Unobtrusive Conflict

Warnings,” Proc. 19th ACM SIGSOFT Symp. and

13th European Conf. Foundations of Software Eng.,

Sept.2011.

[9] Y. Brun, R. Holmes, M.D. Ernst, and D. Notkin,

“Proactive Detection of Collaboration Conflicts,”

Proc. 19th ACM SIGSOFT Symp. and 13th European

IJDCST @Feb-March Issue- V-2, I-3, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

44 www.ijdcst.com

Conf. Foundations of Software Eng., pp. 168-178,

Sept. 2011.

[10] M. Cataldo, P.A. Wagstrom, J.D. Herbsleb, and

K.M. Carley, “Identification of Coordination

Requirements: Implications for the Design of

Collaboration and Awareness Tools,” Proc. 20th

Anniversary Conf. Computer Supported Cooperative

Work, pp. 353-362, Nov. 2006.

[11] “How Distributed VersionControl Systems

Impact Open Source Software Projects,” C.

Rodriguez-Bustos and J. Aponte.

[12] Risk Management in Software Engineering By

Sunil Sapkota in adavanced Software Engineering

10-20-2011.

[13]. Crystal: Precise and Unobtrusive Conflict

Warnings by Yuriy Brun , Reid Holmes , Michael D.

Ernst , David Notkin.

